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ON THE STRUCTURE OF GENERALIZED SOLUTIONS OF THE ONE-DIMENSIONAL 
EQUATIONS OF A POLYTROPIC VISCOUS GAS* 

V-V, SEELUKUIN 

A model system Of equations that defines the unsteady one-dimensional 
flow of a visoucs gas is considered on the assumption that the pressure 
is determined by the adiabatic Poisson law. Generalized solutions are 
investigated in the class of discontinuous functions, a CbiSS Of Correctness 
is separated, and the structure of solutions of this class is clarified. 
It is shown that the initial velocity disCOntinuitieS are instantly 
smoothed out, and from the discontinuity points of the initial density,lines 
of contact discontinuity are formed. These lines exist for an infinite 
time, and the pressure jumps on them vanish exponentially, 

1. Definition of the generalized solution. The initial boundary value problem 
(problem A) is investigated 

P (a1 + =%) = P"ur- Ps. Pi + fw), = 0, P = PY 

u (0, t) = l.4 (171) = 0, u @I 0) = uo (4. P tz, 0) = PO (4; 

p>O,y=;l 

in region Q of two variables 5, t, O<x<l, o< 1< T. Here u is the velocity, p is the 
density, and p is the pressure. If the initial data are fairly smooth and satisfythe consistency 
conditions, this problem is uniquely solvable /l/. Let us investigate the case where the 
initial data are discontinuous 

Definition 1, The measurable functions ~t,p will be called the generalized solution 
(GSf of problem A, when u EL, (Q), vraiminp (Q)> 0, vraimax p (Q)< 00, and the first two 
equations of (1.1) are satisfied in the sense of the integral identities 

55 (P=mr +Pu"~p,Cpcp,+r"'PI=fdxdt+ ~~~*~(~,o)~x=o 

ii 
0 

(P% + p@+)dxdt + ~po$(x,O)dx=O 
00 0 

for arbitrary functions cp,rp E W,l (Q) n L-(0, T;L, (0, 1)) with the conditions 

'pp: f L* (01, cp (x, T) -II, (x, T) =o, cp (0, t) = cp 0, t) =o 

5 p(x,t)dx=ipO(x)dxra, O<t,<T 
0 0 

We take into account here that the left side of the first equation of (1.1) may be 
repxesented, by virtue of the second equation, in the form @@I + (PU')x* 

Subsequently we shall consider only stable GS. 

Definition 2. The GS of problem A will be called stable , if it is the limit of classic 
solutions (CS). 

A more exact definition will be given later. 
To clarify the structure of stable GS we will use its other definition (a proof of the 

equivalence of the definitions will be given later). 
First let us consider one of the properties of CS. 
The CS of problem A can be obtained from the CS of the following problem (problem 8) /l/: 

ut’ = p (P’U<)E -pi, vt’ = u;, Y = p-1 
E, tEQ’: Ocfca, O<tcT 

tw 
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d (0, S) = u’ (a, t) = 0, a’ Gz, 0) = 11; (x), p’ (2, 0) E PC’ (xf 

where &,t aretheLagrangian mass coordinates. The change of variables f, t-x,t 
E 

8 (5, t) = s V’ (rl* t) drl (1.3) 
0 

transfers the CS of problem B into a CS of problem A, The connection of initial data of the 
two problems is generated by the same change of variables. For example for the function u 
we have 

We deal similarly when defining the stable GS of problem A, We determine, first, the 
GS of probleol B and then, making the change of variables (1.31, call it the stable GS 0f 
probkn A, 

We introduce the following notation: 

where 1 a' 11, 11 U' ia are the norms in & (62'). L, (Qb'), respectively, and /I u'[jv is the norm of 
u'(g) in the space VW] of functions of limited variatean: 

Let us rewrite system (1.2) in the form 

u,' x p (In V‘)@ - JIE', V&' E ut' (2.4) 

Definition 3, We call the measurable functions 
vraimin p' (Q')> 0, vraimax p’(Q’f < 

u', p‘ the GS of problem B, if u' EL, (Q'), 
00 and (I.41 axe satisffed in the sense of integral ideneities 

5 $b In v'rp&- hvt- P’R) 9 dt+ f(~ In va’v,a(& W-udg, (6 0)) G=O 

is 

w 

(uy& - v’rpt) ag dt - s VO’J) (E, 0) a5 = 0, v = p-1 
0’ 

for arbitrary functiozs q~ (f, t), 9 (6, t)E W,l (Q’) n L, (0, T; & (0’)) with the conditions 

4p E Lee (0, T, W,l OJ')), 9'atE L, (Q')? V (5, T) =rp (8, T) =O 

~(o,~)~~(~,~)=o, f v'(E,t)d5=9, 0<t<T 
Q' 

Definition 4, We call. the functions u(x, t), p (cc, t)the stable GS of problem A, if they 
were obtained from some GS of problem E by the change of variables (1.3). 

2, The existence and uniqueness, theorem 1, The GS of problem 3 is unique. 

Proof. Assums that two different GS exist. Then for their difference u'= ul' - ?.+',vf = 
VI' - vet by virtue of Definition 3, the equation 

SS (U'Ll (cp,9) + lG ((PV 9)) 4E 4t = O (2.1) 
4 
L' = paw + bqa - $1, L, = ‘it -t- $,t 

a- (lnvI'- In~z')(u1'-~2')-~, b=(pl'----')(vt'--vt')-' 

is satisfied, The assumptions on solutions imply that a, b are bounded measurable functions 
and vraimin 4 (Q') =4,,>0. We approximate them in L,(p) by fairly smooth functions a,, b, 
such that, their absolute values are uniformly bounded with respect to e and 2.vrai min a, (Q')> a,. 

We rewrite (2.1) in the form 

5 $[F (4 - 43 b(F0C-k (b ---b,)B~~+~~~(t~,$)v‘+ &(cp,@u'l48dt=O 
Q 

T0 obtain a contradiction it is sufficient to prove the solvability of the problem 

L,E (fP, llj) =:i? L? (cp, 9) ==6 (2.2) 

for functions cp,ll, of the class indicated in Definition 3, where f,s are arbitrary functions 

from c"" (Q'). It is furthermore necessary for each f, B to have an estimate 
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(2.3) 

that is unifoxm with respect to E. Here and subsequently c is a positive constant, 
Ne introduce the new variable t-t T -t, then (2.2) beccmes equivalent to the following 

problem: 

(2.4) 

The solvability of the linear problem (2.4) can be proved, for instance, by the Galerkin 
method. 

The estimate of (2.3) follows from the formula 

if the estimate of II *PEE no is obtained, which is achieved by multiplying (2.4) by %t. The 
theorem is proved. 

Theorem 2. If uO’ E: L, (W), vO’ E V (W), vraimax uO' (Q') <Xx, xsvraimin vO' (Q') 2 1, x = const > 
0, then problem B has a GS. 

Proof * Let the functions %e', &E' be fairly smooth and suppose it can be the initial 
data for the CS of problem B. We shall use them to approximate the initial data II,, 0 ’ v’ 
in the following sense: 

II No' -uoe' II + IIvo'-nCe' Uv -, 0, 
A. 
aOB)dF,=i, e+O 

Note that this approximation, which satisfies the consistency condition, and always be 
made, since uDe' must converge only in L*(W). 

Let us consider problem B with initial data no,‘, V~‘. For its solution according to ,Q/ 
aerr ne ’ has the.foflowing estimates unifoxm with respect to e: 

I ue< lo -t II vu’ II0 < c, c-l Q v,’ < c 
In particular, the us' are by the imbedding theorem, uniformly 

L,(Q’) with respect to e. 
Using the notation 

we integrate the first of equation ff,2) 

%+ ~qo&==G, Q = - P [P’ (%a, t) - p’ (El, t)] f&’ 
0 

from which by Gronwall's lemma we have 

f&II vz’ 0) III’ < c (2.6) 
By the Helly theorem /2/ we can select from the family of function vL' that Satisfy 

conditions (2.5) and (2.6) a sequence which converges almost everywhere in Q'. The set 
is weakly compact in I&@). Thus some sequence of CS (ai, u;) of problem B exists which, 

uL' 

when E-+0, converges to measur;ble functions u',v' 
converges in L, (Q’) and v,'-+ V' 

in the following sense: ue'+ url weakly 
converges almost everywhere in Q'. 

Obviously (u',v') is the GS of problsm B. Moreover, 
derivatives ua', uI' 

it follows from (2.5) that the 
exist, and 

1 u' 10 <C, tI 2~' //L&Q') <C, C-' CD' <C, 11 vt' Ilo < C 

The theorem is proved. 
Let (u', Y') be the GS of problem B. Let us make the change of variables (1.3): 

u. (2, t) = u’ (F, (2% t)* th v (27 4 - v’ (E (z* th t) 
Here 5 (z, t) is the inverse function of s(E, t) when t is fixed 

(2.7) 

cm 
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EM. 0 

5 (f, t) = u’ (q, t) dq, z = s u’ 01, t) drl (3.9) 
0 0 

By Definition 4 the functions (u,v) are the stable GS of problem A. We shall show that 
they are stable GS in the meaning of Definition 2, i.e, satisfy the integral equations from 
Definition 1, and the bounds of CS of problem A. In passing, we shall give a more precise 
definition of this passage to the limit. 

Let %I,', v,' be that sequence of CS of problem B from the Theorem 2, which converges to 
the functions u',v'. We change on CS u,,',v,,' to Euler coordinates x, t, using formulae 

(2.10) 

%I (XT f) = %’ (En (x9 4 t), v, (59 t) = us’ (En (2, t), t) 

where En (x7 t) is a function that for fixed t is the inverse of 2 (&, t), i.e. 

EnW. 0 

x= s vn’ (% 4 drl 
0 

Obviously (u,,,u,,) is the CS of problem A, hence the integral equations from Definition 1 are 
satisfied by it, if we take the functions %r van as the initial data. 

Lemma 1. The limit relation lim v,(z, t) = v(x, t)holds for almost all 5, tE'Q as n-+00. 

Proof. Suppose the following limit exists at the point t*. t, : 

lim u,'&, to).= V' (&, to) (2.11) 
*- 

We shall show that at the corresponding point (z,,,t,) 

the lermsa is satisfied. 
We have 

Hence 

b 

1 “* (-I, to) 4 = 5” [v’ (rl. to) - ul,’ (?, to)1 drl 
L 0 

Hence the sequence 

Furthermore 

&n (z,,t,,) has the limit 

lim L (G, kd = SO 
n-a 

By the same token the lemma for point %r to is proved owing to the uniform continuity 

of the function u,,'. The validity of the lemma for almost all I, t=Q follows from (2.11) 

being satisfied almost everywhere, and the Jacobian of the change of variables (2.10) is uni- 

formly bounded above and below. 

Lemma 2. The sequence u,(x,t) weakly converges in L,(Q) to u (XT t). 
Proof. By virtue of inequality (2.5) 

I %I I 0 G CT II un k*(Q) G c (2.12) 

where the second estimate is the corollary of the first. Note that these estimates depend 

only on ;9 ~1, vraimnx r:0 (Q), vraimin v0 (R). 
Let u,(I,L) be the limit of some subsequence &)c (~6,~) which converges weakly in L, (Q) . 

Then for any function cp (5. 1) = C"- (0) 

Uk’Pdrdt =! u.,,q dzdt = $ +‘(E,, t)v’(4, t)c’(C. t)d’dt 

cp’ (4, 1) = ‘p (5 (5. t), t), .I (5. t) = f u’ (q, t) dq) 

; 
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On the other hand 

ss ss 
v,lpdz& = 

Q Q 

Since limzk(&,t)= z(E,t)everywhere in Q', and U'k- Y' weakly converges in L,(Q) hence 

ss 
Q 

u,qdzdt =!$u(P&dt 

Consequently ~1~ = Y almost everywhere in Q. 
Since the converging sequence UR is arbitrary, the whole sequence u,, 

in L,(Q) to u. 

Lenma 3. The sequence u,, converges in h(Q) tota. 
Proof. In view of Lemma 2, it is sufficient to prove the ccmpactness 
The compactness follows from estimate (2,121 and the estimate 

is weakly convergent 

IC, in L, (0). 

T-8 1 

ss 
]a,(~, t+6)-u,,(z, t)I’dsdt<c6”1 

0 0 

Because of the uniform boundedness below and above of the Jacobian v,‘, of the change 
of variables E> t- z, t on the solution u,,', v,,' this estimate is equivalent to 

T-45 

1 S&‘(f, t+a)-u,,‘(E, t)(‘dEdtd& 

0 0 

Let us obtain it . Let %I = %I' (E, t + 6) - un' V). We integrate the first equation of 
system (1.2) with respect to t from t to t+6 and multiply it by UP,,. We obtain 

1+6 
u+=+(~i~ \ s,,d+u+,kfrsndq q,=~p,,‘~;~--~~ 

Integrating this equation and applying the estimates (2.51, we obtain the required 
inequality. 

Lemmas 1 and 3, and estimates (2.12) enable us to pass to limit in the integral equations 
of Definition 1 written for a,,,~,,. 

Thus the ~(2, t), v(z, t) is a stable solution of the GS of problem A in the sense of 
Definition 2. Theorem 1 implies that there is no other GS of this problem. 

Let us summarize the above. 

Theorem 3. Let u0 ME L, (Q), v. (5) E V W, vraimax v0 (52)( 00, vraimin v0 (52)> 0. Then 
problem A is uniquely solvable in the class of stable GS. 

3. The structure of stable GS. To clarify the differential properties of a 
stable GS of problem A it is convenient to use Definition 4. 
properties of the functions u' (E, t), v' (5, 1). 

First, we investigate the 

Lemma 4. Let ug', ~6' be the GS of problem B in the subregion Q6' CQ’ with initial 
data 

U' (E, 6) = u' (E, 6), us' (E? 6) = v' (E, 6) 

Then, almost everywhere in Qa' we have u' = l&jr, v' = vat . 

Proof. Instead of satisfying integral relation we may stipulate in Definition 3,the 
satisfaction of the integral relations: 

5! @Inv'qjt + I&~ + ~'cp,)dEdt = I,&) - I,(tl) 

~~(=‘YI--Y.\“t)didt=-i.(t,)+l,(r,i 
t, 0 

1, = S (p In ~9~ + 0)) dE, 11 = 
cl’ 1. v'$ dE, iti”, Ii (t) I= I, (0) 

for any functions 
condition that 

cp,+ that satisfy the same conditions in Definition 3, but without the 
cF=rp-o when t= T. 
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The proof of the equivalence of the integral identities is similar to that given in /3/. 
With this definition u'.u' is the GS of problem B in region Qa' with initial data u* (5, 
N, v'(E9 8). almost everywhere in 4' because of the uniqueness of (u,,',u~)=(u',Y'), 

Lemma 5. A denumerable set {&} C lo, 2’1: ut’ (g, tk) E L, (W), u’ (5, th) E V (Sa’) exists which 
is everywhere dense. 

Proof. Let a+', v,' be that sequence in Theorem 2 which converges to the GS of u',u'. 
Since %JeL,(Q'), then by Fubini's theorem a denumerable everywhere-dense set {tk}c[O,TI exists 
such that u' (&. ft) = L, (fa?. By the estimate (2.6) we have [Iv~'(tk)[v<e for any tk . Hence, it 
is possible according to Aelly's theorem to separate the subsequence (u,,,'}c(v,') which converges 
for any rk at every point Ee#a'. Thus we have 11 v’ (tk)uv < E for any tk. 

It can be shown similarly that 

Theorem 4. In any subregion Qd’cQ’ the function u’ (g, t) is according to Holder uniformly 
continuous with exponents % and % with respect to E and t, respectively. 

Proof. By Lemma 5 we have for some tkr 0 < tk < s 

u’ 6, tk) E w,l (a’), 0’ 6. tk) = v (a)’ 

Let uk’, vk’ be the GS of problem I! in subregion Qt,'CQ' with initial data u' (E, &), 
P' (El k). We approximate these data by smooth functions uOh', vod in the following sense: 

II&-- m'('$ tk)IIW,*(n')+ n&-v'@.* tk) ,,V--*O* 
1 &dE =l.k-tO 
cl 

The CS u,,', vh' of problem B converge to uk', up' by virtue of uniqueness, and for it the 
estimate 

1 ah’ It, < c1 ah”= PPh’uhE - &‘h’ (3.2) 

holds. It is obtained by multiplying the equation Us' = UE' by be', using the identity 

rl;t = +-& (u’u’) + +(p’ + V’Z) vt’ 

From (3.2) we have the estimates 

SUP II ah)(t) IlwXQ,, <Cl II & IIlk s c (3.3) 
+zt<r 

which are uniform with respect to h, and ensure the validity of the lsmma for the function 
uh' (f. t). By Arzela’s lemawecan separate fromthe family ah thesubsequencewhich converges uniformly 

inQtk' to uk’ . The theorem is thus proved also for the function u'. 
Let us define the properties of the function v’ (E, t). The original function is uo'(E)E 

v (U and consequently has not more than a denumerable set of points of discontinuity. 

Theorem 5. Let fit be the points of discontinuity of the function uO' (E) (k = 1, 2,. . .). 
Then the function ~'(8, t) is continuous everywhere in Q', except on the lines E-fik, and 
its discontinuities decrease exponentially along these lines i.e. 

cl k=p (- cd) < Vk (t) < CS exp (- %d 
vii (1)= I u' @A. + 0, t) - VI @h - 0, t) I 

(3.4) 

where the constants Ci are independent of time. 

Proof. All the information contained in the theorem follows from the formula 

p’=+-$-ln(l+ jE(F,T)dT), t>o 

E(~,t)=+p,.(():p{~[~~((.~)z+p’~‘)~~d~+~(I,t)]} 
0 0 

B(&,t)=--~nu’(~,f)S~‘(6,t)d5d9- ju.‘(rl)~u4(6)dSdq+5uo.(rl)d’l 
cl ll 0 0 ” 

(3.5) 

Suppose that the formula is valid. Then the function ~‘(5, t) is continuous with respect 
to E at the point of continuity of the function pa’(g), since B(f,t) is continuous with 

respect to f. The estimate (3.4) is also obtainable from (3.5) 
To prove the validity of formula (3.5) it is sufficient to do so for CS of problem B, 

since v,' --t v' almost everywhere in Q', and u,,'+ u' uniformly in any subregion Qa' C Q' 
and in L, (0’). 
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We integrate the equations 

c' = - p (In p')t - p', u,' = at' 

and obtain 

We put 

(3.3) 

where the function 0 satisfies the relations 

First we multiply the first equation by u'(q, t) and, then, integrate them with respect 

to the variables q, 5, respectively 

z(&, t)= ju'@ dq + i~'(n, t&(6, t)& - U,(E) 
r) 

c1 

~u'~dE=-~~((a')a+p‘v')d&dr+~vd(5)U~(1)dS 
00 0 

where use was made of the relation 

! v’(&,t)dE=k O<t<T 
0 

Substituting the expression obtained for z&t) into the first of relations (3.61, we 
obtain formula (3.5) 

From formula (3.5) and the estimate that is uniform with respect to time III’ lo <C we 
can obtain a similar estimate c-= Q v' < c /4/. 

Theorem 6. The GS u', u' of problem B has almost everywhere in Q' finite derivatives 
u1'. q', "Et', v,', Vt' and satisfies (1.2) almost everywhere in Q'. 

Proof. It follows from estimates (2.7), (3.2) and (3.3) that ua', at', I+', ~E’E&(Q~‘) for any 
subregion Qa' EQ', and almost everywhere in Qd the equations ,111’ = DE’, v,’ = UE’ hold. 

Then, by virtue of (3.1) the function v' has a finite derivative vi almost everywhere 
in Q'. The existence of finite derivatives q‘, UE ensures a similar property for u~i'. 

Let us now consider the properties of the functions u,v. They are determined by the 
change of variables (2.8) and (2.9). 

Lemma6. The function E(z, t) defined by (2.8) and (2.9) is Lipschitz continuous with 
respect to z, and Holder continuous with respect to t with exponent f uniformly in Q. 

The proof follows from the estimates (2.7) for the function v' 
Let us formulate the final properties of the functions u, v. 

Theorem 7. A stable GS u, v of problem A has the following structure: 
1) in any subregion QacQ the function u is continuous Holder with exponents 3 and t 

of z and t, respectively; 
2) the function v&t) has for any t a bounded variation with respect to z, from the 

points of discontinuityoftheoriginal function I+,(X) which do not intersect and do not 
approach the discontinuity line of the function v with respect to the variable x , and 
these discontinuities vanish exponentially (formula (3.4)); 

3) the functions u,v have almost everywhere in Q finite derivatives that appear in 
system (1.11, and satisfy that system almost everywhere, 

Proof. Properties 1 and 2 follow from Theorems 4 and 5 and Lemma 6. 
Let us prove property 3: Let u,, v, be that sequence in (2.10) which converges to u,v. 

By virtue of estimates (2,12), (3.2) and (3.3) in any subregion QbC Q the derivatives UI. 
% v1. (Pa).%* cr exist as functions of L2(Q& where a = ptu, -p, and the equations 
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hold (in &(&)). Since the function v(z,t) has for any t for almost all x a finite 
derivative v,, then frcin the equation a = pu, -p it follows that the finite derivate ~1, 
exists almost everywhere. The theorem is proved. 
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LOCALIZATION OF GAS-DYNAMIC PROCESSES AND STRUCTURE WHEN THE 
MATERIAL IS COMPRESSED ADIABATICALLY, IN THE PEAKING MODE* 

A.P. MIKBAILOV and V.V. STEPANOVA 

Adiabatic compression of gas by a piston, the pressure on which increases 
in the peaking mode, is studied. The entropy is distributed over the mass. 
A class of selfsimilar solutions (the LS mode) is constructed and its 
properties are studied. It is shown that the effective dimensions of the 
compression wave decrease with time and all gas-dynamic perturbations are 
localized within a finite mass of the gas. The solutions obtained are 
characterized by the presence of a structure (inhomogeneities) in the 
density and temperature. The compression occurs without the formation of 

shock waves. 
The peaking mode, i.e. the precesses in which any quantities may become infinite in a 

finite period of time, have a number of unusual properties_ Thus the development of the 
peaking modes in continua is accompanied by localization ("inertia") of the diffusion processes 
and the formation of non-stationary dissipative structures /l-3/. 

Another example is offered by an isentropic (optimal) compression of a finite mass ofgas 
to superhigh densities /2,4-7/**. Such a process takes place when the pressure acting on the 
compressing piston increases as follows (thesmode): 

P (0, t) = PI (tf - tp, n = -2~ (N + f)/(z i (N + S)(Y - 1)); 

to d : d 0 

where N=O, 1, 2 is a geometrical index, y is the adiabatic index and tf denotes the instant 
of peaking. 

The problem of the adiabatic compression of a cold gas initially at rest, by a piston 
acted upon by a pressure which varies with time according to a more general law, with peaking 
at any n<O, is considered below for the case when N=O. 

Another generalization consists of the fact that the entropy of the gas depends on the 

Lagrangian mass coordinate Z>,O is such a manner, that P (z. t) = n,.d’pV for all t0 < t< tf. 
Such a distribution of entropy in the medium arises e.g. behind the shock wave front moving 

through the gas, with velocity varying with time according to a power law. 
Selfmodelling solutions are constructed for a>-Zy/(y+l) (the .LS mode) corresponding to 

** See also: Kazhdan Ya.M. On the problem of adiabatic compression of gas by a spherical 
piston. Preprint In-ta prikl. matem. Akad. Nauk SSSR, MOSCOW, No.89, 1976. 

*Prikl.Matem.Mekhan.,48,6,921-928,1984 


