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ON THE STRUCTURE OF GENERALIZED SOLUTIONS OF THE ONE-DIMENSIONAL
EQUATIONS OF A POLYTROPIC VISCOUS GAS*

V.V, SHELUKHIN

A model system of equations that defines the unsteady one-dimensional

flow of a visoucs gas is considered on the assumption that the pressure

is determined by the adiabatic Poisson law. Generalized solutions are
investigated in the class of discontinuous functions, a class of correctness
is separated, and the structure of solutions of this class is clarified.

It is shown that the initial velocity discontinuities are instantly

smoothed out, and from the discontinuity points of the initial density,lines
of contact discentinuity are formed. These lines exist for an infinite
time, and the pressure jumps on them vanish exponentially.

1., Definition of the generalized solution, The initial boundary value problem
(problem A) is investigated

p (u + uuy) == Pligy — Py, pr + (o) = 0, p = p¥ (1.1)
w0, =ullt) =0, u(x, 0)=u,(z), px, 0) =p,(2);
p>0,v>1

in region Q of two variables =z, 4 0<<z<{{, 0<<i<<7. Here u is the velocity, p is the
density, and p is the pressure. If the initial data are fairly smooth and satisfy the consistency
conditions, this problem is uniquely solvable /1/. Let us investigate the case where the

initial data are discontinuous

Definition 1, The measurable functions u,p will be called the generalized solution
(GS) of problem A, when u & L, (@), vraiminp (@) > 0, vrai max p (@) << o0, and the first two
equations of (l.1l) are satisfied in the sense of the integral identities

1

(Pug; + pu*Q, + PYx + P29s,) dz 2 + § potiewp (, 0) dz =0

]

T
=% I Py L1 T

1
(p¥: + putp,)dz dt 4 Sp.;\p (z,0)dz==0

[}
for arbitrary functions ¢, ¢ & W, (@) N Lo (0, T; L, (0, 1)) with the conditions

==L Q@ N=¢@EN=0, ¢0H=e¢(, =0

1 1
Sp(z, t)dx=Spo(z)dzsa, oL T
o o

We take into account here that the left side of the first equation of (1.1) may be
represented, by virtue of the second equation, in the form (pu), + (ou?)..
Subsequently we shall consider only stable GS.

Definition 2, The GS of problem A will be called stable, if it is the limit of classic
solutions (CS).

A more exact definition will be given later.

To clarify the structure of stable GS we will use its other definition (a proof of the
equivalence of the definitions will be given later).

First let us consider one of the properties of CS.

The CS of problem A can be obtained from the CS of the following problem (problem B} /1/:

ul =p ey —pys v =uy, v=p" (1.2)
1e@ilci<a, Ot T
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w0, t)=u (& =0, u (@ 0)=u, (), o' (z, O) ==p, (z)

where §,¢ are the Lagrangian mass coordinates. The change of variables

3
2@ t)="v (mtdn (1.3)
]
transfers the CS of problem B into a CS of problem A. The connection of initial data of the

two problems is generated by the same change of variables., For example for the function u
we have

L
"~
2
Y

uy’ (€)= ao ( § v’ (1) dn 8o (&) ==y’ ( S 2o () dy)
9

o

We deal similarly when defining the stable GS of problem A. We determine, first, the
GS of problem B and then, making the change of variables (1.3), call it the stable G§ of
problem A,

We introduce the following notation:

={:0<f<ah Q=0 NGBt <D

112" lo o wraimaw I 2.0 (2
i 16 == Vi “ i\

- Vssi<r
where [u’ |, fu' s are the norms in Ly (R'), L, {Qs'), respectively, and [ u' [y is the noxm of
v (§) in the space VIQ'] of functions of limited variation:
Let us rewrz.te system (1.2) in the form
u' X p{lno'h —p', ' =u {1.4)

Definition 3. We call the measurable functions u’, p’ the GS of problem B, if o & L, (@'},
vraimin p’ (@) > 0, vraimax p' (0} < oo and (1.4) are satisfied in the sense of integral identities

(S Invou+ vt poy dtdi+ (i Invi'py (8, 0)-+us'p & 0) dE=0
Q o

(S —vvgdzd —{ wvE 0 dt =0, v=p=
Y 3

for arbitrary functions ¢ (§,8), ¢ &, =Wt ()N Lo (0, T'; Ly (0')) with the conditions
O La (0, T, Wo @), 0 = L, (Q), 0 &, T

Yes — T2 AN n PG 1

PO Y=g n=0, {rEnd=1 01T
3

7y =0

H

ot

s

Definition 4. We call the functions u (z, ), p (¥, ) the stable GS8 of problem &, if they
were obtained from some GS of problem B by the change of variables (1.3).

3y B mwrd mdmsnsem meard svemd mesarimon s NP VL e et D N S
-~ a -~ EALS bcl&\aﬁ (-8 ¢4 uua.qu ILO9 5 PRF I NA - B e G UL bPrusiem o G uxxlque
Proof, Assume that two different GS exist., Then for their difference u' =—u,’ — u,,v ==
v, — 0y’ by virtue of Definition 3, the equation

S L (0, 9) + wLe (0, W) dEdr =0 (2.1)
)3

L' = pagy + boy — P, Ly = @ ¢
a=(Invy — [Inw ) (v — 02V, b= (p — p"Y (01— 0a"V*
is satisfied, The assumptions on solutions imply that a, b are bounded measurable functions
and vraimin a {Q') = a, > 0. We approximate them in L, (@) by fairly smooth functions ae, b
such that their absolute values are uniformly bounded with respect to & and 2.-vraimin a. (@) == a5
We rewrite (2,1) in the form

§ {1t (@ — 00 Vet (b — Ba) e+ L (02 W) v'+ Lo (i, 1) '] d di=0
)}

To obtain a contradiction it is sufficient to prove the solvability of the problem

Lo, ©)Y=/F L, (o W = o (2.2)
e DERN &N 4 !v Rk A 4 a kS /

for functions @,y of the class indicated in Definition 3, where [, g are arbitrary functions
from C°* (Q). It is furthermore necessary for each f, g to have an estimate
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Joulo+ o lo<e 2.3)

that is uniform with respect to €. Here and subsequently ¢ is a positive constant.
We introduce the new variable i{— T — f, then (2.2) becomes egquivalent toc the following

probliem:
t

b =pacty —be S P dr+ F, 9 0)=0 2.4)
[}
t

Fei+bgdt—paage, $:00,5)=1(e, =0

o

The solvability of the linear problem (2.4) can be proved, for instance, by the Galerkin
method.
The estimate of (2.3) follows from the formula

I3 1
(p;zgipggd‘r—sg;d‘t
o L]

if the estimate of [ Yy f, is obtained, which is achieved by multiplying (2.4) by yy. The
theorem is proved.

Theorem 2, If uy & Ly (Q), vy & V ('), vraimax v, (Q') <%, x-vraimin v, (') > 1, % = const >
0, then problem B has a GS.

Proof, Let the functions ug, Vs be fairly smooth and suppose it can be the initial
data for the CS of problem B. We shall use them to approximate the initial data iy, v,
in the following sense:

120" — thoe' | + 00" — vog' v — 0, §v.,;d§=1. e—0

Note that this approximation, which satisfies the consistency condition, and always be
made, since u,’ must converge only in L, (Q').

Let us consider problem B with initial data u,',¥’. For its solution according to /1/
u:’, vy’ has the following estimates uniform with respect to e:

lue lo 4 [va’ o <e, ¢ v’ e 2.5)

where ¢ depends on | u,’ |, x. 1In particular, the u, are by the imbedding theorem, uniformly
bounded in L, (Q') with respect to e,
Using the notation

e=1Inv' &, 1) —Inv (&5, 0

We integrate the first of equation (1.2)
t
we -+ Sqmz dv=G, g=—p[p E.t)—p ()]s
0

6= 5 — sty a0+ 1 @) — I @)
&

from which by Gronwall's lemma we have
sup |lve’ (8) vy < e (2.6)
0<ILT

By the Helly theorem /2/ we can select from the family of function v, that satisfy
conditions (2.5) and {2.6) a sequence which converges almost everywhere in @'. The set u,
is weakly compact in L, (Q'). Thus some sequence of CS (u,', v’} of problem B exists which,
when e-»0, converges to measurable functions wu', 7 in the following sense: u, - u' weakly
converges in L, (Q') and »/— v’ converges almost everywhere in Q.

Obviously (u',v") is the GS of problem B. Moreover, it follows from (2.5) that the
derivatives u:', v, exist, and

Ju o <o | 4 frgen e e <V ey o o <K 2.7
The theorem is proved,
Let (u', v') be the GS of problem B. Let us make the change of variables (1,3):

u(, )=u (@0, v =0 E( 00 {2.8)
Here E(z, f} is the inverse function of z(§, #) when t is fixed
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HER))
z(E,t)=§v’(n,t)dn, 2= { v tdn (2.9)
[1]

0

By Definition 4 the functions (u, V) are the stable GS of problem A. We shall show that
they are stable GS in the meaning of Definition 2, i,e. satisfy the integral equations from
Definition 1, and the bounds of CS of problem A. 1In passing, we shall give a more precise
definition of this passage to the limit,

Let u,, Uy’ be that sequence of CS of problem B from the Theorem 2, which converges to

the functions w',v’. We change on CS u,’,v, to Euler coordinates z,¢, using formulae
, 3 (z, ¢t . .
z (gi t) = § v‘rl (T't t) d']r ﬂtz_t))_——: Un (2.10)
)

Un (2, 1) =ty (Bn (2, 2),8), Vp(z,t) =0, En(z,0), 1)
where B, (r,#) is a function that for fixed t is the inverse of =z (§, 1), i.e.
B )
z = S v (M 8) dm

0

Obviously (un, Un) is the CS of problem A, hence the integral equations from Definition 1 are
satisfied by it, if we take the functions ug,, Vs, as the initial data.

Lemma 1. The limit relation lim v, (z, t) = v (z, t) holds for almost all =z,t=Q as n-»> oco.
Proof, Suppose the follewing limit exists at the point & ¢:
Hm vy’ (Bo, 25) = v (Eor o) (2.11)
n—+co

We shall show that at the corresponding point (z,, ¢)
£
9= S v’ (N, to}dn
0
the lemma is satisfied,

We have
- son
n={vmwa={ o m w5, =1, 0
0 0
Hence
ton 1
S v, (1, to)dn =S [V (, te) — v,” (7, o)l dn
E 0

Hence the sequence £, (z,,¢) has the limit
lim §n (g, to) = Eo
=R
Furthermore

| vn (2or to) — v (Zo, tg) | = | vn' (Bomy to) — v’ (Bay 2}
L on’ (Bony to) — v’ (B t) § -1 v’ (Boy to) — ' (Bos to) |

By the same token the lemma for point =z, 1, 1s proved owing to the uniform continuity
of the function v, The validity of the lemma for almost all gz, te @ follows from (2.11)
being satisfied almost everywhere, and the Jacobian of the change of variables (2,10) is uni-
formly bounded above and below.

Lemma 2. The sequence u, (z,t) weakly converges in L, (Q) to u(z ).

Proof, By virtue of inequality (2.5)
(2.12)

funlo <o flun “[«(Q) ¢

where the second estimate is the corollary of the first. Note that these estimates depend

only on | uell, vraimax v, (R), vraimin v, (Q). .
Let u,(r,t) be the limit of some subsequence (uy} C {1,) which converges weakly in £,(0Q).

Then for any function ¢ (z, e C™(Q)
lim SS uyp dr dt = SS g dz dt = Sg uy (B, )9 (5, 1) 07 (2, 1) dE dt
P J i

13
(0@ 0 =otes 0, 0, 2 G0 = {0 0, i)

0
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On the other hand

Suwazar={u, @@ 0 006,60, 00 @ D= (o, € 0oy @ 0oy 6 nata
Q [} 3
19
(zk & 0 ={v/ t)dn)
0
Since lim zx (§, t) = z (¢, t) everywhere in @', and 'y — v’ weakly converges in L, (¢) hence

Sgu,.«pdzdt=gsuq>dzat
) ¢

Consequently u, =u almost everywhere in Q.
Since the converging sequence u; is arbitrary, the whole sequence u, is weakly convergent
in L (@) to u.

Lemma 3., The sequence u, converges in L, (Q) to u.

Proof. In view of Lemma 2, it is sufficient to prove the compactness u, in L, (Q).
The compactness follows from estimate (2.12) and the estimate

T-01
S S|un(x,t+b)—uﬂ(z, 1) Fdzdt < 8
0 0

Because of the uniform boundedness below and above of the Jacobian 1,’, of the change
of variables §,t—2z,t on the solution ', v/ this estimate is equivalent to

T-6

S|

a
S fu, &, ¢ +8)—u,’ (€, t)[dEdt < cb
0

Let us obtain it ., Let wpn=uy (§ t+ 6 — un' (o). We integrate the first equation of
system (l.2) with respect to t from t to t+ 8 and multiply it by w,. We obtain
48 48

9 . '
wn2=6—5(wn S :sﬂd1)—w,IE S S, dv, 5, =pp, Ung ~— Py,
t

Integrating this equation and applying the estimates (2.5), we obtain the required
inequality.

Lemmas 1 and 3, and estimates (2.12) enable us to pass to limit in the integral equations
of Definition 1 written for wu,, v,.

Thus the u(z, 1), v(z, f) is a stable solution of the GS of problem A in the sense of
Definition 2. Theorem 1 implies that there is no other GS of this problem.

Let us summarize the above,

Theorem 3, Let u, ()& L, (Q), vy (z) & V (Q), vrai max v, () < o0, vraimin v, (Q) > 0. Then
problem A is uniquely solvable in the class of stable GS.

3. The structure of stable GS. To clarify the differential properties of a
stable GS of problem A it is convenient to use Definition 4, First, we investigate the
properties of the functions u’ (§, #), V' (&, #).

Lemma 4, Let u¢,vs’ be the GS of problem B in the subregion @ < @' with initial
data

us' (8, O) =u’ (§, 8), v’ (&, &)= v (§, 8)
Then, almost everywhere in (s’ we have f=uy, v =y

Proof. Instead of satisfying integral relation we may stipulate in Definition 3, the
satisfaction of the integral relations:

Pey

(B lnv'Qy - u'e, + p'oy)dl dt = I () — I, (81)

Kl
cmn oL

o
ks

(U — o) dE dt = — T3 (ts) + T2 (ty)

-

1

1:=S (rlnve, +u'e)di, ’2=§ v de, Um T, (1) =T, (0)
Q g -

for any functions ¢,¢% that satisfy the same conditions in Definition 3, but without the
condition that ¢=¢v=0 when ¢= T



670

The proof of the equivalence of the integral identities is similar to that given in /3/.
With this definition ', ¢ is the GS of problem B in region @, with initial data ' (g,
8), v’ (8, 8), almost everywhere in @, because of the uniqueness of (4, vy) = (v, ).

Lemma 5. A denumerable set {f} [0, TI: wy' (8, &) = Ly (), v’ (&, &) = V (Q') exists which
is everywhere dense.

Proof, Let uy, v, be that sequence in Theorem 2 which converges to the GS of u’,v.
Since '@ Iy(Q), then by Fubini's theorem a denumerable everywhere-dense set {#}C [0, T] exists
such that o' §, ) @ L, (). By the estimate (2.6) we have [vy ()ly <¢ for any ¢ . Hence, it
is possible according to Helly's theorem to separate the subsequence {v,}C{v,} which converges
for any # at every point fe&Q’. Thus we have |V () |y <¢ for any .

It can be shown similarly that

v Oy <e, 0Lt T (3.1)

Theorem 4. In any subregion @i Q' the function u’ (§, ¢) is according to Holder uniformly
continuous with exponents % and % with respect to § and t, respectively.

Proof. By Lemma S5 we have for some f, 0 <<# << 9§
W EneEW @) vE eV @y

Let u;, W' be the GS of problem B in subregion @' C @ with initial data u' (&, &)
v (§, ). We approximate these data by smooth functJ.ons Ugh', Von' in the following sense:
[+

Nt — " @ t) Iwoi@s + Ioan— v & t1) v = 0, {opndt=1, h—0
0

The CS uy’, vy’ of problem B converge to u,', Uy’ by virtue of uniqueness, and for it the
estimate ; ,
|On oy <& On"=ppn'tng — po’ (3.2)

holds. It is obtained by multiplying the equation u,/ ==o; by 0:', using the identity

. 1 ¢ . , 0p
u¢a=—;7(v0)+—<1’ + v )U
From {3.2) we have the estimates

su uy’ (t ST <c¢ 3.3

o fan @) fwoey <o flanelly < (3.3)
which are uniform with respect to h, and ensure the validity of the lemma for the function
un’ (E, t). By Arzela's lemma we can separate from the family u, the su.bsequence which converges uniformly
mQ.,‘ to u,'. The theorem is thus proved also for the function u'.

Let us define the properties of the function v' (8, ). The original function is v, (§) &
V (Q'), and consequently has not more than a denumerable set of points of discontinuity.

Theorem 5. Let P; be the points of discontinuity of the function vy (E) k=1, 2,00 )
Then the function « (§, f) is continuous everywhere in @', except on the lines [f==f;, and
its discontinuities decrease exponentially along these lines i.e,

¢y exp (— eat) << Vi (1) << ¢g xp {— €4t) (3.4)
Vi)=1]v By +0, ) —v (Bxr — 0, ) |

where the constants ¢; are independent of time.

Proof. All the information contained in the theorem follows from the formula
8 a
p=L(t+ SE(§.t)dT), >0 (3.5)

ia
EGo=tp @exo[-L[{ @+ pr)dtigs + BE ]}
o 00 @ - :
B@ H= Sv (1) 5 w @ o dtdn— o (m {us’ ©) a2 dn + {us () dn

n

Suppose that the formula is valid. Then the function p’ (E, ) is continuous with respect
to I at the point of continuity of the function po (E), since B (£, t) is continuous with
respect to . The estimate (3.4) is also obtainable from (3.5)

To prove the validity of formula (3.5) it is sufficient to do so for CS of problem B,
since v, — ¥ almost everywhere in @', and u,’ —u' uniformly in any subregion Qs C Q'
and in L, (Q').
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We integrate the equations

o =—p(np)—p, w=o0
and obtain
1 t
pexp (-%— l)Slp’ dt) = py’ exp (— %"S o d‘l.') (3.6)
t t
s@ )=z + [ G H)—uw @d G y={0Endr
n []

We put
11

Us®)=usmdn, ©E =219+ U@

where the function @ satisfies the relations

3
2@ D=0 mt)+\u &1 d—Us®

n
'®) = pOy + (@O) — p'v' — O

First we multiply the first equation by o' (1, t) and, then, integrate them with respect
to the variables 1, §, respectively

o

a |3
@ y=Svoam+{vmalw.na—v.@
0 0 n

ta
vodi=—{ (@) + pv)dtar + (v © Vo) a2
00

4

o3R

where use was made of the relation
a

{vEnae=1, o<igr

L]
Substituting the expression obtained for z(§,f) into the first of relations (3.6), we
obtain formula (3.5)
From formula (3.5) and the estimate that is uniform with respect to time |u' |, ¢ we
can obtain a similar estimate ¢ v ¢ /4/.

Theorem 6. The GS u',V of problem B has almost everywhere in Q' finite derivatives
w', u', ug', v, ' and satisfies (1.2) almost everywhere in ¢('.

Proof. It follows from estimates (2.7), (3.2) and (3.3) that u', /', v/, o & L, (@s') for any
subregion. @' = @', and almost everywhere in @y the equations u; = oy, v = uy’ hold,

Then, by virtue of (3.1) the function V' has a finite derivative vy almost everywhere
in Q'. The existence of finite derivatives oy, u;’ ensures a similar property for uy'.

Let us now consider the properties of the functions u, v. They are determined by the
change of variables (2.8) and (2.9).

Lemma 6. The function E (z,!) defined by (2.8) and (2.9) is Lipschitz continuous with
respect to z, and Holder continuous with respect to t with exponent % uniformly in Q.

The proof follows from the estimates (2.7) for the function v’

Let us formulate the final properties of the functions u, v.

Theorem 7. A stable GS u, v of problem A has the following structure:

1) in any subregion @sC @ the function u is continuous HOSlder with exponents % and %
of r and t, respectively;

2) the function v (z,?) has for any t a bounded variation with respect to z, from the
points of discontinuity of the original function vpy(z) which do not intersect and do not
approach the discontinuity line of the function v with respect to the variable =z, and
these discontinuities vanish exponentially (formula (3.4));

3) the functions u,v have almost everywhere in Q finite derivatives that appear in
system (1.1), and satisfy that system almost everywhere.

Proof. Properties 1 and 2 follow from Theorems 4 and 5 and Lemma 6.

Let us prove property 3.° Let u,, v, be that sequence in (2,10) which converges to u,v.
By virtue of estimates (2.12), (3.2) and (3.3) in any subregion Qs (C @ the derivatives U,
uy Uy, (pu)y, 0, exist as functions of L, (Qs), where ¢ = pu; —p, and the equations
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P (4 + uug) = 0y, 0 + (pu)y = 0

hold (in Ls (@s)). Since the function v(z,?) has for any t for almost all z a finite
derivative v,, then from the equation o = pu, —p it follows that the finite derivate
exists almost everywhere, The theorem is proved.

Uy
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LOCALIZATION OF GAS-DYNAMIC PROCESSES AND STRUCTURE WHEN THE
MATERIAL IS COMPRESSED ADIABATICALLY, IN THE PEAKING MODE

A,P. MIKHAILOV and V.V. STEPANOVA

Adiabatic compression of gas by a piston, the pressure on which increases
in the peaking mode, is studied. The entropy is distributed over the mass.
A class of selfsimilar solutions (the LS mode) is constructed and its
properties are studied. It is shown that the effective dimensions of the
compression wave decrease with time and all gas-dynamic perturbations are
localized within a finite mass of the gas. The solutions obtained are
characterized by the presence of a structure (inhomogeneities) in the
density and temperature., The compression occurs without the formation of
shock waves.

The peaking mode, i.e. the precesses in which any gquantities may become infinite in a
finite period of time, have a number of unusual properties. Thus the development of the
peaking modes in continua is accompanied by localization ("inertia") of the diffusion processes
and the formation of non-stationary dissipative structures /l-3/.

Another example is offered by an isentropic (optimal) compression of a finite mass of gas
to superhigh densities /2,4-7/**, Such a process takes place when the pressure acting on the
compressing piston increases as follows (the Smode):

PO, t)=Py(ty — )%, n= 29N+ 1)/RQ+ N+ DHy— 1k
H<ES Y

where N =20, 1, 2 is a geometrical index, =y is the adiabatic index and ¢ denotes the instant
of peaking.

The problem of the adiabatic compression of a cold gas initially at rest, by a piston
acted upon by a pressure which varies with time according to a more general law, with peaking
at any <0, is considered below for the case when N=10.

Another generalization consists of the fact that the entropy of the gas depends on the
Lagrangian mass coordinate z>0 is such a manner, that P(z ¢) = apz%pY for all ¢ <t <ty
Such a distribution of entropy in the medium arises e.g. behind the shock wave front moving
through the gas, with velocity varying with time according to a power law.

Selfmodelling solutions are constructed for »> —2y/(yv+ 1) (the LS mode) corresponding to

** See also: Kazhdan Ya.M. On the problem of adiabatic compression of gas by a spherical
piston. Preprint In-ta prikl, matem. Akad. Nauk SSSR, Moscow, No.89, 1.975.
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